
An Evaluation of Strict Timestamp Ordering Concurrency
Control for Main-Memory Database Systems

Stephan Wolf, Henrik Mühe, Alfons Kemper, Thomas Neumann

Technische Universität München
{wolfst,muehe,kemper,neumann}@in.tum.de

Abstract: With the fundamental change of hardware technology, main-memory
database systems have emerged as the next generation of DBMS. Thus, new methods
to execute transactions in a serial, lock-free mode have been investigated and success-
fully employed, for instance in H-Store or HyPer. Although these techniques allow
for unprecedentedly high throughput for suitable workloads, their throughput quickly
diminishes once unsuitable transactions, for instance those crossing partition borders,
are encountered. Still, little research concentrates on the overdue re-evaluation of tra-
ditional techniques, that do not rely on partitioning.

This paper studies strict timestamp ordering (STO), a “good old” technique, in the
context of modern main-memory database systems built on commodity hardware with
high memory capacities. We show that its traditional main drawback – slowing down
reads – has a much lower impact in a main-memory setting than in traditional disk-
based DBMS. As a result, STO is a competitive concurrency control method which
outperforms the partitioned execution approach, for example in the TPC-C benchmark,
as soon as a certain percentage of the workload crosses partition boundaries.

1 Introduction

In recent years, hardware with large capacities of main memory has become available,
leading to a renewed interest in main-memory database systems. Here, page faults no
longer need to be compensated by executing parallel transactions, which allows for re-
moving many synchronization components that are indispensable in traditional, disk-based
database systems. Harizopoulos et al. [HAMS08] found, that most time spent executing a
transaction is actually used by components like buffer manager, lock manager and latch-
ing.

Without the need for hiding I/O latencies, other execution paradigms like partitioned se-
rial execution, as first investigated by Kallman et al. [KKN+08] in their H-Store prototype,
become viable alternatives to traditional locking. Here, transactions are executed sequen-
tially on each partition of the data without the need for any concurrency control at all.

Even though a sequential execution approach leads to outstanding performance when the
data and workload allow for partitioning in a suitable way [KKN+08, KN11], partition
crossing transactions quickly lead to a deterioration in throughput, even on a single node
without additional network delays (see Figure 1). One reason is that current implementa-

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

co
m

m
it

te
d

 t
ra

n
sa

ct
io

n
s

p
e
r

se
co

n
d

 (
ct

p
s)

number of partition crossing transactions in %

Partitioned Execution
Serial Execution

Figure 1: Throughput decrease related to the ratio of part partition-crossing transactions.

tions often rely on coarse granularity synchronization mechanisms, like the full database
lock used in the HyPer DBMS prototype [KN11].

In this paper, we reinvestigate the “good old” timestamp-based concurrency control as
suggested in [BHG87, Car83] decades ago. Major drawbacks of the timestamp approach
– like having to write a timestamp for every read – have to be re-evaluated when data
resides in main-memory.

The remainder of this paper is structured as follows: In Section 2, we will introduce both
partitioned serial execution, as well as the strict timestamp ordering approach (STO) eval-
uated in this work. Section 3 describes our implementation of STO inside the HyPer
database system prototype and highlights the most severe adjustments required when us-
ing timestamp-based concurrency control mechanisms. We offer a thorough evaluation
of STO, as well as a comparison of STO with partitioned serial execution in Section 4.
Section 5 concludes this paper.

2 Formal Background

Before discussing the implementation of strict timestamp ordering in HyPer, we will pro-
vide the theoretical background of the algorithm. Additionally, we outline serial execution
and partitioned execution, which we will compare to strict timestamp ordering.

2.1 Serial Execution

Traditional disk-based database systems frequently rely on locking to achieve serializabil-
ity among concurrent transactions. When reading or writing data to disk, this is essential
since I/O latency need to be masked. In main-memory database systems, however, the
need for masking I/O misses no longer exists allowing for the efficient serial execution of
suitable workloads without traditional concurrency control.

H-Store [KKN+08] pioneered the idea of removing buffer management, as well as locking

and latching from main-memory database systems, allowing for the efficient execution
of partitionable workloads with minimal overhead. This concept, which we refer to as
serial execution, has since been picked up by other main-memory database systems, for
instance the commercialized version of H-Store named VoltDB [Vol10] as well as our
HyPer research prototype DBMS [KN11].

Unlike VoltDB, HyPer also supports mixed OLTP/OLAP applications by separating the
two disparate workloads using virtual memory snapshotting [MKN11]. Here, we concen-
trate only on the OLTP synchronization.

2.2 Partitioned Execution

Scaling the transactional throughput when using serial execution is possible by running
multiple serial execution threads in parallel for disjoint partitions of the data. As shown
by Curino et al. [CZJM10], some workloads can be partitioned such that cases where a
transaction has to access multiple partitions are rare. For the TPC-C benchmark1, for
instance, only 12.5% of all transactions access more than one partition of the data.

Other main memory database systems, which rely on partitioning, disallow the execution
of transactions which might access more than one partition of the data. In contrast, HyPer
executes transactions assuming that they will operate on only one data partition. If a
transaction accesses data outside its own partition, a database lock is acquired causing
transactional processing to fall back into serial execution mode without concurrency on
separate partitions. After the transaction has finished, the database lock is released and
concurrent execution on all partitions of the database is resumed. We call this execution
mode partitioned execution or PE for short.

2.3 Strict Timestamp Ordering (STO)

Timestamp-based concurrency control uses timestamps for synchronization instead of
locks. From the outside it seems that the transactions are executed sequentially accord-
ing to their starting time. In other words, the scheduler generates serializable schedules
that are equal to the serial execution of the transactions ordered by their starting time.

To achieve this, the transaction manager assigns a timestamp TS(Ti) to each transaction
Ti at its start and guarantees that the timestamp of transactions that started later is always
higher than the timestamps of all earlier transactions. These timestamps are used to guar-
antee the Timestamp Ordering (TO) rule: if two operations pi(x) and qj(x) are in conflict,
i.e. they access the same tuple x and at least one operation is a write operation, then the
operation of the transaction with the lower timestamp is always executed first. Thereby,
the resulting schedule is equal to the serial execution of the transactions ordered by their
timestamp and, as a consequence, it is serializable.

1See http://www.tpc.org/tpcc/

In order to enforce the TO rule, the database system has to save the timestamp of the
transaction which has last read tuple x, and the timestamp of the transaction which has
last changed tuple x. In the following, these timestamps are denoted as readTS(x) and
writeTS(x).

With these meta data, the transaction manager is able to perform the following test, which
enforces the TO rule:

1. ri(x): Ti wants to read x:
(a) If TS(Ti) < writeTS(x), the TO rule would be violated. Thus, the transac-

tion Ti has to be aborted.
(b) Otherwise, allow access and set

readTS(x) := max(TS(Ti), readTS(x)).
2. wi(x): Ti wants to write x:

(a) If TS(Ti) < readTS(x) or TS(Ti) < writeTS(x),
the TO rule would be violated. Thus, the transaction Ti has to be aborted.

(b) Otherwise, allow access and set writeTS(A) := TS(Ti).

It is required that write operations on the same data tuple are executed atomically and write
and read operations are mutually excluded.

According to [BHG87] and [CS84], this algorithm is called Basic Timestamp Ordering
(BTO). It generates serializable schedules, but does not guarantee recoverability. In fact,
aborted transactions can cause inconsistency, as another transaction which accessed dirty
data could already be committed.

As recoverability is essential for database systems, we employ an extension of Basic
Timestamp Ordering called Strict Timestamp Ordering (STO) [BHG87]. STO does not
only provide recoverable schedules, but also strict schedules. That means, that no uncom-
mitted changes of a running transaction are overwritten or read by another transaction.
This is prevented by the use of a dirty bit. Each transaction marks tuples with uncom-
mitted changes by setting the dirty bit and other transactions accessing such a tuple have
to wait until the dirty bit is unset, which happens when the previous transaction commits
or is rolled back. In order to avoid deadlocks, the transaction manager has to ensure that
a transaction never waits for younger transactions. Thereby, cyclic waiting is prevented,
which is one of the necessary Coffman conditions for a deadlock [CES71].

3 Implementation of STO

In order to evaluate the performance of STO, we used the database system HyPer [KN11]
to implement the described algorithm. HyPer is an in-memory, high-performance hy-
brid OLTP and OLAP DBMS that originally relies on sequential execution for transaction
processing. To further improve transaction processing throughput, transactions are not
interpreted but are compiled to machine code using the LLVM compiler back-end. This
removes interpretation overhead at runtime and improves hardware optimizations, for ex-
ample branch prediction [Neu11].

The implementation of STO in HyPer required not only a new transaction manager, but
also architectural modifications because of concurrency inside partitions. These impacts of
STO on the architecture will be described in Section 3.2. Before that, the basic data struc-
tures needed by the STO implementation are presented to provide a better understanding
of the implementation.

3.1 Data Structures

Besides the read and write timestamps, further data structures were necessary. To avoid
that dirty data is read or overwritten, a dirty bit is needed. Furthermore, because of reasons
presented in Section 3.2.1, our implementation requires a delete flag. And last but not least,
a dirty bit inventory was needed, which is responsible for unsetting the dirty bits after a
transaction has aborted or committed.

3.1.1 Timestamp Codes

We used 32-bit values for the read and write timestamps and encoded the dirty bit and
delete flag into the write timestamp. The highest bit is reserved for the dirty bit and the
delete flag is set when all other 31 bits of the write timestamp are set. This design has two
advantages compared to a separate delete flag and dirty bit:

• As the write timestamp has to be checked anyway, the check for the dirty bit does
not require an additional memory operation. Furthermore, checking if the dirty bit
is not set and the write timestamp is lower than the transaction’s timestamp requires
only one arithmetic operation.
• The delete flag design is beneficial, as it makes a separate check for tuple deletion

unnecessary. When the delete flag is set, the write timestamp is equal to the high-
est possible timestamp. So, all transactions accessing the deleted tuple will abort
without an additional check of the delete flag.

As the transactions’ timestamps have to be assigned in strictly increasing order, the size
of the timestamp variables determines when the timestamp arrays have to be reset. If a
database processes 250 000 transactions per second in a lab setting (in almost every real-
world scenario, this throughput is not required), the timestamps would have to be reset
only after approximately 2 hours.

This can be done as follows: When a new transaction is started and acquires a new times-
tamp, it is checked if the value range is exceeded. If this is the case, all running transactions
are rolled back, all timestamp fields are reset, and the aborted transactions are restarted.
The impact of aborting running transactions is negligible, as the length of OLTP transac-
tions is short. For domains, where a short and rare delay during transaction processing is
not tolerable, 64-bit timestamps can be used.

3.1.2 Dirty Bit Inventory

The dirty bit inventory is necessary for resetting the dirty bits and is maintained for each
running transaction. Whenever a transaction sets the dirty bit of a tuple which was not set
before, the tuple identifier is inserted into the transaction’s dirty bit inventory. After a trans-
action aborts or commits, the dirty bit inventory is processed and the transaction’s dirty bits
are unset. As a tuple identifier is only ever inserted once into the dirty bit inventory and
as each tuple identifier cannot be in two dirty bit inventories of different transactions at
the same time, it need not be checked whether the dirty bit is set and originates from the
current transaction, which simplifies resetting the dirty bit.

3.2 Architectural Details

By contrast to partitioned execution, strict timestamp ordering allows multiple concurrent
transactions inside partitions. We will briefly discuss the necessary architectural adaption
in this section.

3.2.1 Undoing Deletes

One problem is that concurrency on partition level could violate recoverability. When a
transaction aborts, all its effects have to be undone. If the transaction has deleted tuples,
they have to be reinserted. However, this could fail in a naive implementation because of
violations of unique keys, if a concurrent transaction has inserted a tuple with the same
key in the meantime.

We solved this problem by deferring the removal of tuples to the commit phase of a trans-
action. Deleted tuples are marked with the delete flag and the dirty bit is set, so that other
transactions trying to access this tuple will wait. The deleting transaction skips this tuple
the next time it tries to access it.

3.2.2 Index Structures and Synchronization

Index structures need to be refitted to support concurrent access. Optimizing index struc-
tures for concurrency is an active and complex topic of research. Transactional mem-
ory implementations [DFGG11, DGK09], as well as relativistic programming [TMW10,
HW10] provide promising results on modern hardware.

In our implementation, we use full index latching to synchronize access to index structures.
This is reasonable, as each partition has its own index structures. However, when done
naively, this solution can constitute a major performance bottleneck as shown by [HAMS08],
who analyzed the overhead of traditional locking in the context of main-memory database
systems. We evaded this issue by optimizing the lock implementation. Concretely, we
used an adapted version of the MCS lock [MCS91], which uses spinning on thread-local
variables for waiting and allows reader and writer synchronization. That boost the per-

formance of our STO implementation by a factor of two compared to traditional latching
using the lock implementation from the pthreads library. Furthermore, we avoid lock-
ing the index structures for each tuple. Instead, if we subsequently access tuples from the
same partition, we keep the lock until we switch to the next partition.

3.2.3 Synchronization of Admissibility Check

Besides the index structures, we also have to ensure that the check for admissibility of
a transaction’s operation is thread-safe. As we have to mutually exclude access to the
index structures, we avoiding the necessity of additional locking, by extending this critical
section to also contain the check of admissibility. Concretely, when accessing a tuple from
one partition, we lock its index structures, lookup the tuple, perform the admissibility
check and access the tuple. Before switching to the next partition, we release the lock,
so that other transactions can proceed working on that partition. Access to the dirty bit
inventory does not need to be synchronized, as each transaction has its own inventory.

4 Evaluation

In this Section, we will evaluate the strict timestamp ordering approach and compare
its performance to partitioned serial execution. All benchmarks were conducted on a
Dell PowerEdge R910 server with 4x Intel Xeon X7560 processors each containing eight
cores clocked at 2.26GHz. The server is equipped with 1TB of main-memory split into
64x 16GB RDIMMs connected to four separate memory controllers interconnected by In-
tel’s Quick Path Interconnect technology. For our evaluation, redo logging was disabled
for all approaches, to ensure that the results are not distorted by effects resulting from the
logging technique we use.

4.1 Read versus Write Performance

One reason, why STO performed poorly on disk-resident database systems, is that it sig-
nificantly slowed down read operations: Updating the read timestamp caused additional
disk latency. In memory resident database systems, I/O latency is not dominating the
performance any more. Therefore, we re-evaluated the read performance of STO.

For this, we designed a microbenchmark. It consists of one large table with 10 million
tuples. Each tuple consists of two attributes: a 64-bit integer key and a 64-bit integer
value. A hash map is used as primary index. The table is divided into 128 partitions
by using Fibonacci hashing on the primary key. To avoid conflicts, each thread has its
own set of tuples, which we call the threads workset. Concretely, the first thread accesses
only the first b10 million/(number of threads)c tuples, the second thread the following
b10 million/(number of threads)c tuples, etc.

The benchmark offers two modes: read or write. In both modes, there is only one type

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 1 2 6 10 14 4 8 12 16 20 24 28 32

tr
a
n
sa

ct
io

n
s

p
e
r

se
co

n
d

 (
tp

s)

number of threads

STO read
Serial Execution read

STO write
Serial Execution write

Figure 2: The read and write performance of STO

0 G

50 G

100 G

150 G

200 G

250 G

300 G

read write

c
y
c
le

s
 c

o
u
n
t

index latching
timestamp logic

transaction

35 %

20 %

45 %

30 %

25 %

45 %

Figure 3: Cycles Distribution

of transaction that is provided with an array of 50 primary keys taken from the threads
workset. In write mode, the transactions increment the value attribute of the corresponding
tuples and in read mode, the transactions fetch the value attribute of each tuple and check
a condition, that is always false, to avoid that the query optimizer removes the fetch query,
as the value is not used.

As the partitions are arranged by the Fibonacci hash of the primary key, the workset of
each thread is uniformly distributed over all partitions. This has two implications: First,
all transactions are partition-crossing. Second, the transactions interfere with each other
by latching the partitions’ index structures. But they do not conflict, as the data sets are
disjoint.

Figure 2 shows the results from the micro benchmark subject to the number of threads.
The duration of processing 1 million transactions was measured and the transactions per
second (tps) throughput determined. Three runs were executed for each measurement and
the mean was taken.

STO’s read and write curve both start nearly with the same throughput. The slope exhibits
linear growth up to 16 threads. Each additional thread constantly increases the throughput
by about 20 000 tps. Starting from 16 threads, the system uses hyper-threading to execute
the software threads. As a result, the gradient slowly declines and the throughput increase
gained by adding a new thread declines with each additional thread. Still the throughput
increases at a slower rate of about 10 000 tps on average.

Looking at write performance, STO can outperform serial execution when using at least 2
threads. Furthermore, by using 32 threads, we can increase the throughput by one order of
magnitude compared to the serial execution.

In read mode, STO achieves about 25% higher peak throughput than in write mode. In
contrast, serial execution achieves a difference of a factor of 2.5. This shows that the
traditional problem of STO – slowing down read operations – still persists in main-memory
database systems but its impact is reduced: While in disk-resident database systems the
difference between read and write operations was about one order of magnitude because
of disk latency, in main-memory database systems, the difference is about a factor of 2 to
3.

4.2 Overhead analysis

As it was shown by Harizopoulos et al. [HAMS08] that latching in traditional database
systems produces severe overhead, we employed a lock implementation that is optimized
for highly parallel systems, called the MCS lock. Still, we should differentiate between
the overhead produced by the STO logic and the overhead produced by latching, as STO
does not rely on latching index structures. For example, lock-free index structures or index
structures which rely on relativistic programming [HW10, TMW10] could be used.

We analyzed how much time is needed for each component of the concurrency control
approach: Latching, STO logic and execution of the transaction itself using the previous
benchmark in both modes. For determining the time difference between two evaluation
points, we used the CPU cycles counter. Concretely, we defined measure points before
and after each latching operation as well as each STO operation. At these points, the
difference between the current cycles count and the cycles count at the previous measure
point is computed and the result is added to a thread-local summation variable for each
phase.

Figure 3 shows the resulting distribution taken from one run with 32 threads. Similar
results were obtained when using a different number of threads and are therefore omitted
here. It can be observed that the total cycles count of the write transactions is about 25%
higher than of the read transaction, which matches the result from the write and read
comparison.

Furthermore, in both cases, the basic transaction instructions such as updating tuples,
fetching tuples, etc., cover about half of the time of a transaction. In read mode, this
does not seem to fit to the previous benchmark, where serial execution was about 4 times
faster than STO run with a single thread. Concretely, the time needed for the basic trans-
action instructions should be about one quarter of the cycles total. The reason for this
difference can be explained by cache effects. When, for example, a timestamp is updated,
the changes will be written into the processor’s cache. As a result, the expensive propa-
gation of the change to the main-memory will happen, when the cache line is replaced,
which is usually caused by a read operation. As the basic transaction instructions are read
intensive – looking up primary keys in the hash map, fetching tuples – they are likely to
replace cache lines and cause costly propagation to main-memory. As a consequence, the
expensive write operations caused by latching or timestamp maintenance slow down the
basic transaction instructions, as these are read intensive. Therefore, half of the overhead
of the basic transaction instructions seems to be also caused by locking and latching. In
write mode, this effect is not significant. Here, the analysis reflects the results of the pre-
vious benchmark: When using one thread STO achieves about half of the performance of
serial execution.

The overhead caused by concurrency control is distributed similarly in read and write
mode. Although the STO overhead in write mode is higher than in read mode – the dirty
bit inventory has to be processed and the dirty bits have to be reset – it can be observed that
in both cases index latching causes more overhead than the STO logic itself. Nevertheless
the optimized MCS lock could decrease the overhead of latching by about a factor of 4
compared to the results of running a disk-resident database in main-memory [HAMS08].

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

co
m

m
it

te
d

 t
ra

n
sa

ct
io

n
s

p
e
r

se
co

n
d

 (
ct

p
s)

number of partition crossing transactions in %

Strict Timestamp Ordering
Partitioned Execution

Serial ExecutionTPC-C default

Figure 4: TPC-C benchmark with varying the number of partition-crossing transactions

Still, index latching produces significant overhead and we will investigate the performance
improvements achievable with lock free index structures in future research.

4.3 Strict Timestamp Ordering versus Partitioned Execution

Finally, we compare strict timestamp ordering to partitioned execution while varying the
number of partition crossing transactions. For the analysis, we used the well-known
TPC-C benchmark2 as it is easily partitionable by using the warehouse id and widely used
as a benchmark for main-memory database systems comparable to HyPer, for instance
in [KKN+08, Vol10].

In the TPC-C benchmark there are two types of transactions that cross partition borders
– 25% of the payment transactions and 10% of the new order transactions. Regarding
their ratio in the total workload, this leads to a total of about 12.5% partition-crossing
transactions. For this benchmark, we equally adjusted the percentage of partition-crossing
payment and new order transactions from 0% to 100%, resulting in a total ratio of 0% to
87, 5%.

In Figure 4, we show the average sustainable throughput of serial execution, partitioned
execution and strict timestamp ordering while varying the percentage of transactions which
cross partition boundaries. In order to provide a fair comparison, we counted only the
number of committed transactions per second, as STO solves conflicts by aborting the
conflicting transaction. We set the number of warehouses to 128, which resulted in about
17 GB of data, and used 20 threads.

When no partition crossing transactions are included in the workload, PE performs sig-
nificantly better than STO. Here, conditions are optimal for PE as every transaction is
restricted to one partition of the data and no locking is necessary at all. STO, on the other
hand, requires atomic operations for locking and needs to update read/write timestamps.
Therefore, the throughput achieved by STO is about 33% lower than the throughput of PE.

For an increased number of partition crossing transactions, PE’s throughput declines sig-

2See http://www.tpc.org/tpcc/

nificantly. At 12.5% partition crossing transactions – the percentage in the original TPC-C
– the throughput achieved by PE has already dropped below the throughput achieved with
STO. As the number of partition crossing transactions increases further, the throughput
curve converges to the throughput achieved by serial execution. This was to be expected,
since PE uses serial execution without parallelism for partition crossing transactions caus-
ing it to behave like serial execution for high percentages of partition crossing transactions.

STO exhibits constant throughput regardless of how many transactions cross partition
borders. This is due to its reliance on per-tuple timestamps which a) constitutes a fine-
granularity concurrency control method and b) does not require a centralized locking in-
frastructure. Thus, it is perfectly suited for workloads that can not be completely parti-
tioned.

5 Conclusion

In this paper, we re-evaluated the traditional strict timestamp ordering concurrency control
algorithm in a main-memory database system on modern hardware, while most modern
main-memory DBMS omit explicit concurrency control in favor of partitioning and serial
execution.

We found that the traditional drawback of STO – slowing down read operations as if they
were write operations – is less significant in main-memory than in disk-based database
systems. Here, the performance of read and write operations differs by about a factor
of 2, whereas in disk-resident database systems the difference was at least one order of
magnitude because of disk latency.

As a result, STO is a competitive alternative to partitioned execution: While partitioned
execution is – by design – ideal for a perfectly partitionable workload, STO allows the effi-
cient execution of workloads regardless of the quality of the underlying partitioning. Even
a low number of partition-crossing transactions, for example the default ratio of 12.5%
partition crossing transactions in the TPC-C benchmark, suffice that STO outperforms PE.
Therefore, STO is suitable for environments where transactions can not be easily restricted
to work on only one partition of the data.

Additionally, we found that traditional bottlenecks like latching need to be re-evaluated
from an implementation standpoint: We could improve the performance of STO by a fac-
tor of 2 by using an optimized latch implementation which uses thread-local spinning.
Still, the overhead of latching stays a significant factor and it should be evaluated if tech-
nologies like lock-free index structures, transactional memory or relativistic programming
can further reduce it.

In summary, re-investigating the suitability of traditional works in concurrency control for
their performance in a fundamentally changed hardware environment has allowed us to
find a more robust concurrency control method for main memory DBMS that is competi-
tive to current approaches.

References

[BHG87] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Control
and Recovery in Database Systems. Addison-Wesley, New York, 1987.

[Car83] Michael James Carey. Modeling and Evaluation of Database Concurrency Control
Algorithms. PhD thesis, University of California, Berkeley, 1983.

[CES71] E.G. Coffman, M. Elphick, and A. Shoshani. System Deadlocks. ACM Computing
Surveys (CSUR), 3(2):67–78, 1971.

[CS84] M.J. Carey and M. Stonebraker. The Performance of Concurrency Control Algorithms
for Database Management Systems. In Proceedings of the 10th International Confer-
ence on Very Large Data Bases, VLDB ’84, pages 107–118, San Francisco, CA, USA,
1984. Morgan Kaufmann Publishers Inc.

[CZJM10] Carlo Curino, Yang Zhang, Evan P. C. Jones, and Samuel Madden. Schism:
a Workload-Driven Approach to Database Replication and Partitioning. PVLDB,
3(1):48–57, 2010.

[DFGG11] Aleksandar Dragojević, Pascal Felber, Vincent Gramoli, and Rachid Guerraoui. Why
STM can be more than a Research Toy. Communications of the ACM, 54:70–77, April
2011.

[DGK09] Aleksandar Dragojević, Rachid Guerraoui, and Michal Kapalka. Stretching Transac-
tional Memory. ACM SIGPLAN Notices, 44:155–165, May 2009.

[HAMS08] Stavros Harizopoulos, Daniel J. Abadi, Samuel Madden, and Michael Stonebraker.
OLTP Through the Looking Glass, and What We Found There. In Proceedings of the
2008 ACM SIGMOD International Conference on Management of Data, pages 981–
992, New York, New York, USA, 2008. ACM Press.

[HW10] Philip W. Howard and Jonathan Walpole. Relativistic Red-Black Trees. Technical
report, PSU Computer Science Department, Portland, Oregon, USA, 2010.

[KKN+08] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo, Alex Rasin, Stan-
ley B. Zdonik, Evan P. C. Jones, Samuel Madden, Michael Stonebraker, Yang Zhang,
John Hugg, and Daniel J. Abadi. H-Store: A High-Performance, Distributed Main
Memory Transaction processing system. PVLDB, 1(2):1496–1499, 2008.

[KN11] Alfons Kemper and Thomas Neumann. HyPer: A hybrid OLTP&OLAP main memory
database system based on virtual memory snapshots. In ICDE, pages 195–206, 2011.

[MCS91] J.M. Mellor-Crummey and M.L. Scott. Algorithms for Scalable Synchronization on
Shared-Memory Multiprocessors. ACM Transactions on Computer Systems (TOCS),
9(1):21–65, 1991.

[MKN11] Henrik Mühe, Alfons Kemper, and Thomas Neumann. How to Efficiently Snapshot
Transactional Data: Hardware or Software Controlled? In DaMoN, pages 17–26, 2011.

[Neu11] Thomas Neumann. Efficiently Compiling Efficient Query Plans for Modern Hardware.
PVLDB, 4(9):539–550, 2011.

[TMW10] Josh Triplett, Paul E. McKenney, and Jonathan Walpole. Scalable Concurrent Hash
Tables via Relativistic Programming. ACM SIGOPS Operating Systems Review,
44(3):102–109, August 2010.

[Vol10] VoltDB LLC. VoltDB Technical Overview. http://voltdb.com/_pdf/
VoltDBTechnicalOverviewWhitePaper.pdf, 2010.

