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ABSTRACT
Data-cleaning (or data-repairing) is considered a crucial problem in
many database-related tasks. It consists in making a database con-
sistent with respect to a set of given constraints. In recent years,
repairing methods have been proposed for several classes of con-
straints. However, these methods rely on ad hoc decisions and tend
to hard-code the strategy to repair conflicting values. As a conse-
quence, there is currently no general algorithm to solve database
repairing problems that involve different kinds of constraints and
different strategies to select preferred values. In this paper we de-
velop a uniform framework to solve this problem. We propose a
new semantics for repairs, and a chase-based algorithm to compute
minimal solutions. We implemented the framework in a DBMS-
based prototype, and we report experimental results that confirm
its good scalability and superior quality in computing repairs.

1. INTRODUCTION
In the constraint-based approach to data quality, a database is

said to be dirty if it contains inconsistencies with respect to some
set of constraints. The data-cleaning (or data-repairing) process
consists in removing these inconsistencies in order to clean the
database. It represents a crucial activity in many real-life infor-
mation systems as unclean data often incurs economic loss and er-
roneous decisions [15].

Data cleaning is a long-standing research issue in the database
community. Focusing on recent years, many interesting proposals
have been put forward, all with the goal of handling the many facets
of the data-cleaning process.

– A plenitude of constraint languages has been devised to cap-
ture various aspects of dirty data as inconsistencies of constraints.
These constraint languages range from standard database depen-
dency languages such as functional dependencies and inclusion de-
pendencies [1], to conditional functional dependencies [16] and
conditional inclusion dependencies [15], to matching dependencies
[14] and editing-rules [18], among others. Each of these languages
allows to capture different forms of dirtiness in data.

– Various repairing strategies have been proposed for these con-
straint languages. One of the distinguishing features of these strate-
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gies is how they use the constraints to modify the dirty data by
changing values into “preferred ” values. Preferred values can be
found from, e.g., master data [24], tuple-certainty and value-accura-
cy [19], freshness and currency [17], just to name a few.
– Repairing strategies also differ in the kind of repairs that they
compute. Since the computation of all possible repairs is infeasi-
ble in practice, conditions are imposed on the computed repairs to
restrict the search space. These conditions include, e.g., various
notions of (cost-based) minimality [7, 8, 10] and certain fixes [18].
Alternatively, sampling techniques are put in place to randomly se-
lect repairs [7].

It is thus safe to say that there is already a good arsenal of ap-
proaches and techniques for data cleaning at our disposal. In this
paper, we want to capitalize on this wealth of knowledge about the
subject, and investigate the following foundational problem: what
happens to the data administrator facing a complex data-cleaning
problem that requires to bring together several of the techniques
discussed above? This problem is illustrated in the following ex-
ample.

Example 1: Consider the database shown in Fig. 1 consisting of
customer data (CUSTOMERS), with their addresses and credit-card
numbers, and medical treatments paid by insurance plans (TREAT-
MENTS). We refer to these two tables as the target database to be
cleaned. As is common in corporate information systems [24], an
additional master-data table is available; this table contains highly-
curated records whose values have high accuracy and are assumed
to be clean. In our approach, master data is referred to as the source
database, since it is a source of reliable clean data.

CUSTOMERS
SSN NAME PHONE CONF STR CITY CC#

t1 111 M. White 408-3334 0.8 Red Ave. NY 112321
t2 222 L. Lennon 122-1876 0.9 NULL SF 781658
t3 222 L. Lennon 000-0000 0.0 Fry Dr. SF 784659

TREATMENTS
SSN SALARY INSUR. TREAT DATE

t4 111 10K Abx Dental 10/1/2011
t5 111 25K Abx Cholest. 8/12/2012
t6 222 30K Med Eye surg. 6/10/2012

MASTER DATA (Source Table)
SSN NAME PHONE STR CITY

tm 222 F. Lennon 122-1876 Sky Dr. SF

Figure 1: Customers, Treatments and Master Data.
We first illustrate the problem of specifying a set of constraints

under which the target database is regarded to be clean, as follows:
(a1) Standard functional dependencies (FD): d1 = (SSN,NAME
→ PHONE) and d2 = (SSN,NAME → CC#) on table CUS-
TOMERS. The pair of tuples {t2, t3} in the target database violates
both d1 and d2; the database is thus dirty.



(a2) A conditional FD (CFD): d3 = (INSUR[Abx] → TREAT
[Dental]) on table TREATMENTS, expressing that insurance com-
pany ‘Abx’ only offers dental treatments (‘Dental’). Tuple t5 vio-
lates d3, adding more dirtiness to the target database.

(a3) A master-data based editing rule (eR), d4, stating that when-
ever a tuple t in CUSTOMERS agrees on the SSN and PHONE at-
tributes with some master-data tuple tm, then the tuple t must take
its NAME, STR, CITY attribute values from tm. Tuple t2 does not
adhere to this rule.

(a4) An inter-table CFD d5 between TREATMENTS and CUSTOME-
RS, stating that the insurance company ‘Abx’ only accepts cus-
tomers who reside in San Francisco (SF). Tuple pairs {t1, t4} and
tuples {t1, t5} violate this constraint.

With the dirty target database at hand, we are faced with the
problem of repairing it. The main problem is to identify and select
“preferred values” as modifications to repair the data.

(b1) Consider FD d1. To repair the target database one may want to
equate t2[PHONE] and t3[PHONE]. The FD does not tell, however,
to which phone number these attribute values should be repaired:
‘122-1876’ or ‘000-0000’, or even a completely different value. As
it happens in this kind of problems, we assume that the PHONE
attribute values in the CUSTOMERS table come with a confidence
(Conf.) value. If we assume that one prefers values with higher
confidence, we can repair t3[PHONE] by changing it to ‘122-1876’.

(b2) Similarly, when working with the TREATMENTS table, we
may use dates of treatments to infer the currency of other attributes.
If the target database is required to store the most recent value for
the salary by FD d6 = (SSN → SALARY), this may lead us to
repair the obsolete salary value ‘10K’ in t4 with the more recent
(and preferred) value ‘25K’ in t5.

(b3) Notice that we don’t always have a clear policy to choose pre-
ferred values. For example, when repairing t2[CC#] and t3[CC#]
for FD d2, there is no information available to resolve the conflict.
This means that the best we can do is to “mark” the conflict, and
then, perhaps, ask for user-interaction in order to solve it.

Another crucial aspect that complicates matters is the interac-
tion between dependencies: repairing them in different orders may
generate different repairs.

(c1) Consider dependencies d1 and d4. As discussed above, we
can use d1 to repair tuples t2, t3 such that both have phone-number
‘122-1876’; then, since t2 and t3 agree with the master-data tuple
tm, we can use d4 to fix names, streets and cities, to obtain: (222,
F. Lennon, 122-1876, Sky Dr., SF, 781658), for t2, and (222, F.
Lennon, 122-1876, Sky Dr., SF, 784659), for t3. However, if, on
the contrary, we apply d4 first, only t2 can be repaired as before;
then, since t2 and t3 do not share the same name anymore, d1 has
no violations. We thus get a different result, of inferior quality.

A first, striking observation about our example is that, despite
many studies on the subject, there is currently no way to handle
this kind of scenarios. This is due to several strong limitations of
the known techniques.

Problem 1: Missing Semantics First, although repairing strate-
gies exist for each of the individual classes of constraints discussed
at items (a1), (a2) and (a3), there is currently no formal seman-
tics for their combination. In fact, the interactions shown in (c1)
require a uniform treatment of the repairing process and a clear
definition of what is a repair. Aside from the generic notion of a

repair as an updated database that satisfies the constraints, it is not
possible to say what represents a “good” repair in this case.
Problem 2: Missing Repair Algorithms Since there is no se-
mantics, we have no algorithms at our disposal to compute repairs.
Notice that combining the repairing algorithms available for each
of the constraints in isolation does not really help, since repairing
a constraint of one type may break one of a different type. Also,
current algorithms tend to hard-code the way in which preferred
values are used for the purpose of repairing the database. As a
consequence, there is no way to incorporate the different strategies
illustrated in (b1) and (b2) into existing repairing algorithms in a
principled way.

Problem 3: Main-Memory Implementations and Scalability
Third, even if we were able to devise a reasonable semantics for
this kind of scenarios, we would still face a paramount problem,
i.e., computing solutions in a scalable way despite the high com-
plexity of the problem. Computing repairs requires to explore a
space of solutions of exponential size wrt the size of the database.
In fact, previous proposals have mainly adopted main-memory im-
plementations to speed-up the computation, with a rather limited
scalability (in the order of the tens of thousands of tuples).
Contributions The main contribution of this paper consists in
developing a uniform framework for data-cleaning problems that
solves the issues discussed above. More specifically:

(i) We introduce a language to specify constraints based on equal-
ity generating dependencies (egds) [4] that generalizes many of the
constraints used in the literature. This standardizes the way to ex-
press dependencies, and extends them to express inter-table con-
straints, with several benefits in terms of scalability, as discussed in
our experiments.

(ii) The core contribution of the paper consists in the definition
of a novel semantics for the data-cleaning problem. The definition
of such a semantics is far from trivial, since our goal is to formal-
ize the process of cleaning an instance as the process of upgrading
its quality, regardless of the specific notions of value preference
adopted in a given scenario. Our semantics builds on two main
concepts. First, we show that seeing repairs simply as cell updates
is not sufficient. On the contrary, we introduce the new notion of a
cell group, that is essentially a “partial repair with lineage”; then,
we formalize the notion of an upgrade by introducing a very general
notion of a partial order over cell groups; the partial order nicely
abstracts all of the most typical strategies to decide when a value
should be preferred to another, including master data, certainty, ac-
curacy, freshness and currency. In the paper, we show how users
can easily plug-in their preference strategies for a given scenario
into the semantics. Finally, by introducing a new category of val-
ues, called lluns, we are able to complete the lattice of instances
induced by the partial order, and to provide a natural hook for in-
corporating user feedbacks into the process.

(iii) We introduce the notion of a minimal solution and develop al-
gorithms to compute minimal solutions, based on a parallel-chase
procedure. The definition of the chase is far from trivial, since
our goal is to guarantee both generality and proper scalability. To
start, we chase violations not at tuple level, but at equivalence-
class level [8]. This allows us to introduce a notion of a cost
manager as a plug-in for the chase algorithm that selects which
repairs should be kept and which ones should be discarded. The
cost manager abstracts and generalizes all of the popular solution-
selection strategies, including similarity-based cost, set-minimality,
set-cardinality minimality, certain regions, sampling, among oth-
ers. In Example 1, our semantics generates minimal solutions as



DEPENDENCY LANGUAGE REPAIR STRATEGY VALUE PREFERENCE SOLUTION SELECTION
System FDs CFDs ERs Int.T.CFDs RHS LHS Confid. Currency Master Cost Certain Card.Min Sampling

[8]
√ √ √ √ √

[10]
√ √ √ √ √ √ √

[23]
√ √ √ √ √

[18]
√ √ √ √

[7]
√ √ √ √ √

LLUNATIC
√ √ √ √ √ √ √ √ √ √ √ √ √

ext. dependencies chase proced. partial order cost manager

Table 1: Feature Comparison.

the ones in Figures 2 and 3, where Li values represent lluns (con-
fidence values have been omitted); notice that other minimal solu-
tions exist for this example. Cost managers allow users to differen-
tiate between these two solutions, which have completely different
costs in terms of chase computation, and ultimately to fine-tune the
tradeoff between quality and scalability of the repair process.

CUSTOMERS
SSN NAME PHONE STR CITY CC#

t1 111 M. White 408-3334 Red Ave. SF 112321
t2 222 F. Lennon 122-1876 Sky Dr. SF L0
t3 222 F. Lennon 122-1876 Sky Dr. SF L0

TREATMENTS
SSN SALARY INSUR. TREAT DATE

t4 111 25K Abx Dental 10/1/2011
t5 111 25K Abx Dental 8/12/2012
t6 222 30K Med Eye surg. 6/10/2012

Figure 2: Repaired Instance #1.

CUSTOMERS
SSN NAME PHONE STR CITY CC#

t1 L1 M. White 408-3334 Red Ave. NY 112321
t2 L2 L. Lennon 122-1876 NULL SF 781658
t3 222 L. Lennon 000-0000 Fly Dr. SF 784659

TREATMENTS
SSN SALARY INSUR. TREAT DATE

t4 111 25K Abx Dental 10/1/2011
t5 111 25K L3 Choles. 8/12/2012
t6 222 30K Med Eye surg. 6/10/2012

Figure 3: Repaired Instance #2.
(iv) We develop an implementation of the chase engine, called
LLUNATIC. To the best of our knowledge, LLUNATIC is the first
system that runs over the DBMS to compute repairs. We devote
special care in implementing our parallel chase – which may gen-
erate large trees of repairs – in a scalable way. A key ingredient
of our solution is the development of an ad-hoc representation sys-
tems for solutions, called delta relations. In our experiments, we
show that the chase engine scales to databases with millions of tu-
ples, a considerable advancement in scalability wrt previous main-
memory implementations.

We believe that these contributions make a significant advance-
ment with respect to the state-of-the-art. To start, our proposal
generalizes many previous approaches. Table 1 summarizes the
features of LLUNATIC with respect to some of these approaches.
LLUNATIC is the first proposal to achieve such a level of general-
ity. Even more important, this work sheds some light on the crucial
aspect of data-cleaning problems, namely the trade-offs between
the quality of solutions and the complexity of repairing algorithms.
This allows us to select data-repairing algorithms with good scal-
ability and superior quality with respect to previous proposals, as
our experiments show.
Organization of the Paper The preliminaries are in Section 2.
In Sections 3, 4, and 5 we introduce the key components of the
semantics of a cleaning scenario, which is defined in Section 6. The
chase algorithm is described in Sections 7 and 8. Our experiments
are reported in Section 9. Related work is described in Section 10.

2. PRELIMINARIES
We start by presenting some background notions and introducing

the constraint language used in the paper.
A schema S is a finite set {R1, . . . , Rk} of relation symbols,

with each Ri having a fixed arity ni ≥ 0. Let CONSTS be a count-
ably infinite domain of constant values, typically denoted by low-
ercase letters a, b, c, . . . . Let NULLS be a countably infinite set of
labeled nulls, distinct from CONSTS. An instance I = (I1, . . . , Ik)
of S consists of finite relations Ii ⊂ (CONSTS∪ NULLS)ni , for i ∈
[1, k]. Let R be a relation symbol in S with attributes A1, . . . , An

and I an instance of R. A tuple is an element of I and we denote
by t.Ai the value of tuple t in attribute Ai. Furthermore, we al-
ways assume the presence of unique tuple identifiers for tuples in
an instance. That is, ttid denotes the tuple with id “tid ” in I . Given
two disjoint schemas, S and T , if I is an instance of S and J is an
instance of T , then the pair 〈I , J 〉 is an instance of 〈S, T 〉.

A relational atom over T is a formula of the form R(x) with
R ∈ T and x is a tuple of (not necessarily distinct) variables.
Traditionally, an equality generating dependency (egd) over T is
a formula of the form ∀x(φ(x) → xi = xj) where φ(x) is a
conjunction of relational atoms over T and xi and xj occur in x.

To express data-cleaning contraints, we rely on a specific form
of egd. More specifically, besides relation atoms, we also consider
equation atoms of the form t1 = t2, where t1, t2 are either con-
stants in CONSTS or variables, and allow for both source and target
atoms in the premise. In our approach, a cleaning egd is then a
formula of the form ∀x(φ(x) → t1 = t2) where φ(x) is a con-
junction of relational and equation atoms over 〈S, T 〉, and t1 = t2
is of the form xi = c or xi = xj , for some variables xi, xj in x
and constant c ∈ CONSTS. Furthermore, at most one variable in the
conclusion of an egd can appear in the premise as part of a relation
atom over S. The latter condition is to ensure that the egd specifies
a constraint on the target database rather than on the fixed source
database. With an abuse of notation, in the following we shall often
refer to these cleaning egds simply as egds.

Egds for our running example are expressed as follows:
e1.Cust(ssn, n, p, s, c, cc),Cust(ssn, n, p′, s′, c′, cc′)→ p = p′

e2.Cust(ssn, n, p, s, c, cc),Cust(ssn, n, p′, s′, c′, cc′)→ cc = cc′

e3. Treat(ssn, s, ins, tr, d), ins = ‘Abx’→ tr = ‘Dental’
e4.Cust(ssn, n, p, s, c, cc),MD(ssn, n′, p, s′, c′)→ n = n′

e5.Cust(ssn, n, p, s, c, cc),MD(ssn, n′, p, s′, c′)→ s = s′

e6.Cust(ssn, n, p, s, c, cc),MD(ssn, n′, p, s′, c′)→ c = c′

e7.Cust(ssn, n, p, str , c, cc), Treat(ssn, sal , ins, tr, d),
ins = ‘Abx’→ c = ‘SF’

e8. Treat(ssn, s, ins, tr, d), Treat(ssn, s′, ins′, tr′, d′)→ s = s′

An immediate observation is that constants in egds can be avoi-
ded altogether, by encoding them in additional tables in the source
database. Consider dependency e3 in our example in which two
constants appear: ‘Abx’ in attribute INSUR and ‘Dental’ in at-
tribute TREAT. We extend S with an additional binary source table,
denoted by CSTe3 with attributes INSUR and TREAT, correspond-
ing to the “constant” attributes in e3. Furthermore, we instantiate
CSTe3 with the single tuple te3 : (Abx,Dental). Given this, e3 can



be expressed as an egd without constants, as follows:

e′3. Treat(ssn, s, ins, tr, d),Cste3(ins, tr′)→ tr = tr′

In general, S can be extended with such constants tables, one for
each CFD, and their source tables contain tuples for the constants
used to define the CFD. In other words, these tables coincide with
the pattern tableaux associated with the CFDs [16]. Of course, one
needs to provide a proper semantics of egds such that whenever
such constant tables are present, egds have the same semantics as
CFDs. We give such semantics later in the paper.

Further extensions of egds with, e.g., built-in predicates, match-
ing functions and negated atoms, are needed to encode matching
dependencies and constraints for numerical attributes [20, 9]. We
do not consider them in this paper for simplicity of exposition.

3. CLEANING SCENARIOS AND LLUNS
Our uniform framework for data repairing is centered around

the concept of a cleaning scenario. A cleaning scenario consists
essentially of a source schema S, a target schema T , and a set
of constraints Σ. Here, S and T represent the two databases in-
volved in the repairing process (see Example 1): (i) S, the source
database, provides clean and reliable information as input for the
repairing process (like, for example, master data). We assume
that source databases cannot be changed and consist of constants
from CONSTS only; (ii) T , the target database, corresponds to the
database that is dirty relative to Σ, and that needs to be repaired.
The target database may contain constants from CONSTS and null
values from NULLS. Such null values indicate missing or unknown
values. However, we also allow the target database to contain a
third class of values, called lluns (pronounced “loons”), which we
introduce next.

Recall from Example 1 that t2 and t3 form a violation for the
dependency e2 (stating that customers with equal ssns and names
should have equal credit-card numbers), and that the target database
could be repaired by equating t2.CC# = t3.CC#. However, as dis-
cussed before, no information is available as to which value should
be taken in the repair. In such case, we repair the target database
(for e2) by changing t2.CC# and t3.CC# into the llun L0, that is
to indicate that we need to introduce a new value for the credit-card
number that may be either 781658 or 784659, or some other pre-
ferred value. In this case, such value is currently unknown and we
mark it so that it might be resolved later on into a constant, e.g., by
asking for user input.

We denote by LLUNS = {L1, L2, . . .} an infinite set of sym-
bols, called lluns, distinct from CONSTS and NULLS. Lluns can
be regarded as the opposite of nulls since lluns carry “more infor-
mation” than constants. In our approach, they play two important
roles: (i) they allow us to complete the lattice induced by our par-
tial orders, as it will be discussed in the next section; (ii) they pro-
vide a clean way to record inconsistencies in the data that require
the intervention of users to be resolved.

With this in mind, given an instance J of T , along with an in-
stance I of S, the goal is to compute a repair of J , i.e., a set of
updates to J such that the resulting instance satisfies the constraints
in Σ.

Early works about database repairing [3, 21] followed an ap-
proach that relied on tuple-insertions and tuple-deletions. Since
tuple-deletions may bring to unnecessary loss of information, the
recent literature has concentrated on tuple updates, instead. Roughly
speaking, we may say that the semantics adopted in these works are
centered around three main ideas. First, a repair is seen as a set of
changes to the cells of the database (each cell being an attribute of
a tuple). Second, the logic to repair conflicting values is hardcoded

into the semantics. Third, cost functions are used to (heuristically)
compare different repairs and choose the “good” ones.

In the following sections, we develop a new semantics for clean-
ing scenarios that departs from this standard in three significant
ways. Our first intuition is that, in order to generalize the semantics
to larger classes of constraints and different ways to pick-up pre-
ferred values, it is not sufficient to reason about single-cell updates.
On the contrary, we need to introduce a notion of “repairs with a
lineage”, called cell groups, in the sense that: (a) we keep track
of cells that need to be repaired together; (b) we keep track of the
provenance of their values, especially if they come from the source
database.

A second, key idea, is that the strategy to select preferred values
and repair conflicts should be factored-out of the actual repairing
algorithm. Our solution to do that is to introduce a notion of a
partial order over cell groups. The partial order plays a central role
in our semantics, since it allows us to identify when a repair is an
actual “upgrade” of the original database.

Finally, we introduce a principled way to check when a repaired
instance satisfies the constraints, and to compare repairs with one
another. This is based on an extension to data cleaning of the notion
of instance homomorphism [12] that is typically used to compare
the relative information content of database instances.

The next sections are devoted to these notions.

4. CELL GROUPS AND REPAIRS
Given instance 〈I , J 〉 of 〈S, T 〉, we represent the set of changes

made to repair the target database J in terms of cell groups. As
the name suggests, cell groups are groups of cells, i.e., locations
in a database specified by tuple/attribute pairs ttid.Ai. For exam-
ple, t2.CC# and t3.CC# are two cells in the CUSTOMERS table.
Observe the following:

(a) As our example shows, to repair inconsistencies, different cells
are often changed together, i.e., they are either changed all at the
same time or not changed at all. For example, t2.CC# and t3.CC#
are both modified to the same llun value in Figure 2. Cell groups
thus need to specify a set of target cells, called occurrences of the
group, and a value to update them.

(b) In addition, in some cases the target cells to repair receive their
value from the source database; consider Example 1 and depen-
dency e5. When repairing t2, cell t2.STREET gets the value ‘Sky
Dr.’ from cell tm.STREET. Since source cells contain highly reli-
able information, it is important to keep track of the relationships
among changes to target cells and values in the source. To do this,
a cell group c has a set of associated source cells carrying prove-
nance information about the repair in terms of cells of the source
database. We call these source cells the justifications for c, since
they provide lineage information for the change we make to the tar-
get cells in c, i.e., to its occurrences. Occurrences and justifications
need to be kept separate since we can only update target cells, while
source cells are immutable.

(c) Cell groups provide an elegant way of describing repairs. In-
deed, in order to specify a repair it suffices to provide the original
target database together with the set of cell groups to modify. In
other words, cell groups can be seen as partial repairs with lineage.

These observations are captured by the following definitions:

Definition 1 [CELL GROUP] A cell group g over an instance 〈I , J 〉
of 〈S, T 〉 is a triple 〈v → C, by Cs〉 where: (i) v is a value in
CONSTS ∪ NULLS ∪ LLUNS; (ii) C is a finite set of cells of the
target instance, J , called the occurrences of g, denoted by occ(g);



(iii) Cs is a finite set of cells of the source instance, I , called the
justifications of g, denoted by just(g).

A cell group g = 〈v → C, by Cs〉 can be read as “change the
target cells in C to value v, justified by the source cells in Cs”. We
define a repair to an instance 〈I , J 〉 as a set of cell groups.

Definition 2 [REPAIR] A repair Rep = {g0, . . . , gk} for instances
〈I , J 〉 is a (possibly empty) finite set of cell groups over 〈I , J 〉,
such that each cell of J occurs in at most one cell group gi.

That is, each cell in J is either unchanged in a repair or it is
modified in a unique way as described by the cell group to which it
belongs. We denote by gRep(c) the cell-group of cell c according to
Rep.

Example 2: In our example, consider the repair Rep1, consisting
of the following cell groups referred to as g1, . . . , g7:

Rep1 = { g1 : 〈L0(781658, 784659)→ {t2.CC#, t3.CC#}, by ∅〉
g2 : 〈F.Lennon→ {t2.NAME, t3.NAME}, by {tm.NAME}〉
g3 : 〈122-1876→ {t2.PHN, t3.PHN}, by ∅〉
g4 : 〈Sky Dr.→ {t2.STR, t3.STR}, by {tm.STR}〉
g5 : 〈Dental→ {t5.TREAT}, by {tc3 .TREAT}〉
g6 : 〈SF→ {t1.CITY}, by {tc7 .CITY}〉}
g7 : 〈25K→ {t4.SALARY, t5.SALARY}, by ∅〉}

Cell group g1 fixes credit-card numbers for dependency e2; it
has empty justifications because no source relation is involved in
e2. On the contrary, cell groups g2 and g4 repair tuples t2, t3 for
dependencies e4, e5; justifications for these groups contain the re-
spective cells in the master-data tuple tm. Similarly, for cell groups
g5, g6; here tc3 , tc7 are the tuples in the CSTe3 , CSTe7 tables, en-
coding the constants in the original CFDs.

When applied to the original database in Figure 1, repair Rep1

yields the repaired instance shown in Figure 2. Clearly, other re-
pairs are possible. For example, to resolve e3 one may consider
changing the value of the cell t5.INSURANCE into a new llun value
L1, i.e., an unknown value that improves ‘Abx’. The following re-
pair, Rep2, follows the same approach to satisfy all dependencies,
and yields the repaired instance shown in Figure 3:

Rep2 = {g7, 〈L1 → {t1.SSN}, by ∅〉, 〈L2 → {t2.SSN}, by ∅〉
〈L3 → {t5.INSURANCE}, by ∅〉}

Note that J itself can be seen as the empty repair, Rep∅.

Given 〈I, J〉, we say that a repair is complete if each cell of J
occurs in a cell group in Rep, i.e., all cells in J are covered by the
repair. We may assume, without loss of generality, that a repair is
always complete. Indeed, a repair Rep can be easily completed into
a complete repair Rep′, as follows:
(i) initially, we let Rep′ = Rep;
(ii) for each cell c of J that is not changed by Rep, if val(c) ∈
CONSTS, then we add to Rep′ the cell group 〈val(c)→ {c}, by ∅〉;
(iii) for each cell c of J that is not changed by Rep, if val(c) ∈
NULLS, then we add to Rep′ the cell group of c with value val(c),
occurrences consisting of all cells of J in which val(c) occurs and
empty justifications.

From now on, we always assume a repair to be complete, and we
blur the distinction between a repair Rep and the instance Rep(J )
obtained by applying Rep to J .

5. THE PARTIAL ORDER
We are now ready to introduce another crucial ingredient of our

framework: the partial order. The partial order is the core element
of the semantics of our repairs and, as already mentioned, is used
to indicate preferred upgrades to the target database. We want users

to be able to specify different partial orders for different repairing
problems in a simple manner. To do this, the user only has to spec-
ify for each attribute in the target schema when two values are pre-
ferred over each other. This is done by specifying an assignment Π
of so-called ordering attributes to T . As we will see shortly, such
an assignment automatically induces a partial order on cell groups.

A Hierarchy of Information Content. In order to define our
partial order, let us first introduce a simple hierarchy between the
three kinds of values that appear in a database, namely nulls, con-
stants, and lluns. More specifically, given two values v1, v2 ∈
NULLS ∪ CONSTS ∪ LLUNS, we say that v2 is more informative
than v1, in symbols v1 � v2 if v1 and v2 are of different types, and
one of the following holds: (i) v1 ∈ NULLS, i.e., the first value is a
null value; or (ii) v2 ∈ LLUN, i.e., the second value is a llun.

User-Specified preferred values. We say that an attribute A of T
has ordered values if its domain DA is a partially ordered set. To
specify which values should be preferred during the repair, users
may associate with each attribute Ai of T a partially ordered set
PAi = 〈D,≤〉. The poset PAi associated with attribute Ai may
be the empty poset, or its domain DAi if Ai has ordered values, or
the domain of a different attribute DAj that has ordered values. In
the latter case, we call Aj the ordering attribute for Ai. Intuitively,
PAi specifies the order of preference for values in the cells of Ai.
An assignment of ordering attributes to attributes in T is denoted
by Π. For reasons that become clear shortly, Π is referred to as the
partial order specification.

In our example, the DATE attribute in the TREATMENTS table,
and the confidence column, CONF, in the CUSTOMERS table have
ordered values (to simplify the treatment, we consider CONF as
an attribute of the table). For these attributes, we choose the cor-
responding domain as the associated poset (i.e., we opt to pre-
fer more recent dates and higher confidences). Other attributes,
like the PHONE attribute in the CUSTOMERS table, have unordered
values; we choose CONF as the ordering attribute for PHONE (a
phone number will be preferred if its corresponding confidence
value is higher). Notice that there may be attributes, like SALARY
in TREATMENTS, that have ordered values; however, the natural
ordering of values does not reflect our notion of a preferred value.
To model the correct notion of preference, we use DATE as the
ordering attribute for SALARY (we prefer most recent salaries). Fi-
nally, attributes like SSN will have an empty associated poset, i.e.,
all constant values are equally preferred. Below is a summary of
the assignment Π of ordering attributes in our example (attributes
not listed have an empty poset):

Π =


PCUSTOMERS.CONF = DCUSTOMERS.CONF

PTREATMENTS.DATE = DTREATMENTS.DATE

PCUSTOMERS.PHONE = DCUSTOMERS.CONF

PTREATMENTS.SALARY = DTREATMENTS.DATE

PCUSTOMERS.SSN = ∅


Partial order on cell values. Given an assignment Π, we can de-
fine a corresponding partial order �Π

J for the values of cells of the
target instance J as follows. For any pair of values v1, v2 we say
that v1 �Π

J v2 iff one of the following holds:

(i) either v1 = v2 or v1�v2, i.e., the values are equal or the second
one is more informative than the first;

(ii) v1 appears in cell t1.A1, v2 in cell t2.A2 in J , and both are
constants in CONSTS; then, assume the ordering attributes for A1

and A2, called A′1, A′2 have the same poset, i.e., PA′
1

= PA′
2
; call

v′1, v
′
2 the values of cells t1.A′1, t2.A′2. Then, v1 �Π

J v2 iff v1 = v2

or v′1 < v′2 according to PA′
1

= PA′
2
.



We also consider values of the source instance I . In our ap-
proach, source values are immutable, and all equally preferable.
So, we assume that the partial order �I over values in I is based
on rule (i) only. We call�Π

〈I ,J〉 the partial order over values of cells
in 〈I , J 〉 obtained by the union of �Π

J and �I , with the additional
rule that values of source cells are always preferable to values of
target cells, i.e., for each target cell t.At and source cell t′.As, it
is always the case that val(t.At) �Π

〈I ,J〉 val(t′.As). In fact, we
always give preference to values from the source, like master-data
or constant values in dependencies.

Given the partial order �Π
〈I ,J〉, in the following we want to be

able to compute upper bounds for cell values. To do this, we use
lluns. Indeed, for any set C of cells we denote by lub�Π

〈I ,J〉
(C) the

value that is (i) either the least upper bound for values of all cells in
C according to �Π

〈I ,J〉, if it exists; (ii) a new value Ni not in J , if
all cells in C have null values; (iii) a new llun value Lj otherwise.

Partial order on cells groups. The partial order �Π
〈I ,J〉 over cell

values induces a partial order on the cell groups of 〈I , J 〉. Before
we turn to the definition, we want to exclude from the comparison
cell groups that correspond to unjustified ways of changing the tar-
get. In order to do this, we say that a cell group g has a valid value
if one of the following conditions holds. Consider the value vallub
that is the least upper bound of values in occ(g)∪ just(g) according
to �Π

〈I ,J〉, i.e., vallub = lub�Π
〈I ,J〉

(just(g) ∪ occ(g)). Then, either

val(g) = vallub , i.e., the cell group takes the value of the least up-
per bound, or vallub�val(g), i.e., the cell group takes an even more
informative value.

Given cell groups g and g′ with valid values, we say that g �Π g
′

iff (i) occ(g) ⊆ occ(g′) and just(g) ⊆ just(g′), and (ii) either
val(g) and val(g′) are values of the same type (null, constant, or
llun), or val(g) � val(g′). In essence, we say that a cell group g′

can only be preferred over a cell group g according to the partial
order, if a containment property is satisfied, and the value of g′ is at
least as informative as the value of g. If the containment property
is not satisfied for g and g′ then these cell groups are incompa-
rable relative to the partial order. Indeed, cell groups that change
unrelated groups of cells represent incomparable ways to modify a
target instance.

Example 3: Consider a simple relation R(A,B), with three de-
pendencies: (i) an FD A → B, and two CFDs: (ii) A[a] →
B[x], A[a] → B[y]. Notice that the two CFDs clearly contra-
dict each other. Assume R contains two tuples: t1 : R(a, 1), t2 :
R(a, 2), and that PA is A itself. Following is a set of ordered cell
groups:

〈1→ {t1.B}, by ∅〉 �Π

〈2→ {t1.B, t2.B}, by ∅〉 �Π

〈x→ {t1.B, t2.B}, by {tc1.x}〉 �Π

〈L→ {t1.B, t2.B}, by {tc1.x, tc2.y}〉

Partial order on repairs. Given an instance 〈I , J 〉, a partial order
�Π over cell groups in 〈I , J 〉, and two complete repairs, Rep, Rep′,
we say that Rep′ upgrades Rep, denoted by Rep �Π Rep′, if for
each group g ∈ Rep there exists a group g′ ∈ Rep′ such that g �Π

g′. If Rep �Π Rep′ and the converse does not hold, then we write
Rep ≺Π Rep′. A repair Rep′ is thus preferable to Rep whenever
Rep �Π Rep′. This is where the real strength of the partial order
lies: it provides a uniform way of incorporating information on
preferred repairs.

Proposition 1: Given an assignment Π of ordering attributes to
attributes in T , the corresponding partial order�Π

〈I ,J〉 over values

of cells in 〈I , J 〉 induces a partial order �Π over the cell groups
and repairs of 〈I , J 〉. In fact, �Π is semi-join lattice.

Notice that, besides the standard rules above, users may specify
additional custom rules to plug-in other value-selection strategies
and refine the lattice of cell groups. As an example, a frequency
rule may state that the lub of cell groups g and g′ with constant
values c1 and c2 and empty justifications should take as value c1
(c2, resp.) if |occ(g1)| > |occ(g2)| (|occ(g2)| > |occ(g1)|, resp.).

6. SEMANTICS
With the partial order specification Π in place, we now define a

cleaning scenario as a quadruple CS = {〈S, T 〉,Σ,Π}. Given a
cleaning scenario and an instance 〈I , J 〉, we address the problem
of defining a solution for CS over 〈I , J 〉. Intuitively, a solution is
a repair for 〈I , J 〉 that satisfies the set Σ of egds and is an upgrade
of the original target instance J relative to �Π. We next formalize
these notions.

Consider an instance 〈I,Rep(J)〉 and a set Σ of constraints.
Usually, Rep(J) is called a solution if 〈I,Rep(J)〉 satisfies Σ us-
ing the standard semantics of first-order logic. Since we want to
—rather ambitiously— ensure that there is always a solution we
need to revise this semantics. In contrast, previous proposals often
fail to return a repair or are stuck in an endless loop during repair-
ing, as is illustrated next.

Consider dependency e3 from Example 1. Suppose that a con-
tradictory dependency e′′3 .Treat(ssn, s, ins, tr, d), ins = ‘Abx′

→ tr = ‘Cholest.′ is specified. In addition, assume that only modi-
fications to the TREAT attribute-values are allowed. Clearly, there is
no repair made of constants that can satisfy both dependencies [16].
However, one may consider of changing ‘Dental’ and ‘Cholest.’ to
a llun L that improves both original values. In essence, the llun has
the role of indicating to the user that the constraints are contradic-
tory. In our setting, we want to regard this repair as a solution of a
conflicting cleaning scenario.

Consider an egd e : ∀xφ(x̄)→ x = x′. First, recall that, in the
standard semantics, 〈I,Rep(J)〉 satisfies e if for any homomor-
phism h that maps the variables x̄ into values of 〈I,Rep(J)〉 such
that φ(h(x̄)) is true, then also h(x) = h(x′) must be true. We want
this to hold in our semantics as well. However, we want more. That
is, we allow h(x) 6= h(x′) as long as the cell group corresponding
to h(x) is an upgrade to the cell groups corresponding to h(x′), or
vice versa.

To make this precise, we need to extend h to a mapping from
variables to cell groups. Since h associates values to variables,
it also associates with each variable xi ∈ x̄ a set of cells from
〈I,Rep(J)〉, called cellsh(xi), one for each occurrence of xi and
all with the same value, h(xi). We use these to define the cell group
of xi according to h, as follows.

Given a formula φ(x), a repair Rep, an homomorphism h of
φ(x̄) into 〈I,Rep(J)〉, and a variable xi ∈ x̄, the cell group of xi
according to h is defined as gh(xi) = 〈h(xi)→ C, by Cs〉 where C
(resp. Cs) is the union of all occurrences (resp. justifications) of cell
groups gRep(ci) in Rep, for each cell ci ∈ cellsh(xi). In addition,
Cs contains all cells in cellsh(xi) that belong to the source I .

We are now ready to introduce our extended notion of satisfac-
tion, namely satisfaction after repairs:

Definition 3 [SATISFACTION AFTER REPAIRS] Given an egd e :
∀x φ(x)→ x = x′, an instance 〈I, J〉, and a repair Rep, we say
that 〈I,Rep(J)〉 satisfies after repairs e wrt the partial order�Π if,
whenever there is an homomorphism h of φ(x) into 〈I,Rep(J)〉,
then (i) either the value of h(x) and h(x′) are equal, or (ii) it is
the case that gh(x) �Π gh(x′) or gh(x′) �Π gh(x).



We can now find a repair that satisfies the conflicting egds e3

and e′′3 above. Given a tuple t in the target, consider Rep that
repairs t.TREAT with L, and justifies the change with both cells
in the source corresponding to constants ‘Dental’ and ‘Cholest.’.
Now, despite the fact that L is not equal to any of the constants in
the dependencies, both dependencies are satisfied after repairs by
Rep(J).

Definition 4 [SOLUTION] Given a cleaning scenario CS = {〈S, T 〉,
Σ,Π} and instance 〈I , J 〉 a solution for CS over 〈I , J 〉 is a re-
pair Rep such that: (i) J �Π Rep, i.e., Rep upgrades J ; and (ii)
〈I,Rep(J)〉 satisfies after repairs Σ wrt �Π.

An important property of cleaning scenarios is that every input
instance has a solution, albeit a solution that is not necessarily min-
imal and is rather uninformative.

Theorem 2: Given a scenario CS = {〈S, T 〉,Σ,Π} and an input
instance 〈I , J 〉, there always exists a solution for CS and 〈I , J 〉.
Proof: Indeed, there is always a solution corresponding to the re-
pair that changes all cells of J to a single llun L, and justifies it by
all cells in I , i.e., Reptrivial = 〈L→ cells(J), by cells(I)〉. 2

Among all possible repairs, we are interested in those that mini-
mally upgrade the dirty instance.

Definition 5 [MINIMAL SOLUTION] A minimal solution for a clean-
ing scenario is any solution Rep that is minimal wrt ≺Π, i.e., such
that there exists no other solution Rep′ such that Rep′ ≺Π Rep.

The repair Rep1 in Example 2 is a minimal solution for the sce-
nario in Example 1: it is an upgrade of J , it satisfies the dependen-
cies, and by undoing any of its changes violations arise. Minimal
solutions are not unique. Indeed, also repair Rep2 in Example 2
is a minimal solution. As an example of a non-minimal solution,
one can add to Rep2 the cell group 〈L4 → {t2.NAME}, by ∅〉.
The resulting repair Rep3 is still a solution but not a minimal one
(Rep2 ≺Π Rep3). Consider now repair Rep4, obtained by adding
a cell group 〈111111 → {t2. CC#}, by ∅〉 to Rep2. In this case,
Rep4 is not a solution because the last cell group is totally unjusti-
fied wrt the partial order, and therefore it is not true that Rep4(J)
is an upgrade of the original target instance.

An important property is that two repairs can be efficiently com-
pared wrt to the partial order. We assume here that the partial order
of two values v �Π

〈I ,J〉 v
′ can be checked in constant time.

Theorem 3: Given two solutions Rep,Rep′ for a scenario CS over
instance 〈I , J 〉, one can check Rep �Π Rep′ inO(n+kmlog(m))
time, where n is the number of cells in J , k is the maximum number
of cell groups in Rep, Rep′, and m is the maximum size of a cell
group in Rep, Rep′.

Given a cleaning scenario CS and an instance 〈I , J 〉, the data
repairing problem consists of computing all minimal solutions for
CS over 〈I , J 〉. We provide a chase-based algorithm for the data
repairing problem in the next section.

What are Lluns, in the End? The role and the importance of lluns
should now be apparent. While lluns are nothing more than sym-
bols from a distinguished set, like constants and nulls, their use in
conjunction with cell groups makes them a powerful addition to the
semantics. Not only they allow us to complete the lattice of cell-
groups and repairs, but, when appearing inside cell-groups, they
also provide important lineage information to support users in the
delicate task of resolving conflicts. Consider again Example 3 in
Section 5. The cell group 〈L→ {t1.B, t2.B}, by {tc1.x, tc2.y}〉 is
a clear indication that it was not possible to fully resolve the con-
flicts, and therefore user interventions are needed to complete the

repair. In addition, the cell-group provides complete information
about the conflict, both in terms of which target cells – and there-
fore which original values – where involved, and also in terms of
source values that justify the change.

7. COMPUTING SOLUTIONS
In order to generate solutions for cleaning scenarios, we resort

to a variant of the traditional chase procedure for egds [12]. How-
ever, our chase is a significant departure from the standard one, for
several reasons: (i) during the chase, we shall make extensive use
of the partial order, �Π; (ii) to generate all possible solutions, a
dependency may be chased both forward, to satisfy its conclusion,
or backward, to falsify its premise; this, in turn, means that the
we need to consider a disjunctive chase, which generates a tree of
alternative repairs; (iii) finally, and most important, we shall not
consider violations at the tuple level, as it is common [12], but at
the higher level of equivalence classes.

To explain this latter difference, consider a simple functional de-
pendency A → B over relation R(A,B,C), with tuples t1 =
R(1, 2, x), t2 = R(1, 2, y), t3 = R(1, 4, z), t4 = R(2, 5, w),
t5 = R(2, 5, v). It is highly inefficient to analyze the violations of
this FD at the tuple level; in fact, eventually, theB value of t1, t2, t3
will all become equal, and therefore one may prefer grouping and
fixing them together. In the literature [8, 15] this has been for-
malized by means of equivalence classes. We want to introduce a
similar concept into our chase algorithm. Given the higher general-
ity of our dependency language, we need a number of preliminary
definitions.

Preliminary Notions Recall that, given an homomorphism h of a
formula φ(x̄) into 〈I,Rep(J)〉, we denote by gh(x) the cell group
associated by h with variable x. We first introduce the notions of
witness and witness variable for a dependency e. Intuitively, the
witness variables are those variables upon which the satisfiability of
the dependency premise depends; these are all variables that have
more than one occurrence in the premise, i.e., they are involved in
a join or in a selection.

Definition 6 [WITNESS] Let e : ∀x (φ(x)→ x = x′) be an egd. A
witness variable for e is a variable x ∈ x̄ that has multiple occur-
rences in φ(x̄). For an homomorphism h of φ(x̄) into 〈I,Rep(J)〉,
we call a witness, wh for e and h, the vector of values h(x̄w) for
the witness variables x̄w of e.

Consider, for example, dependency e8 in Example 1 (we omit
some of the variables for the sake of conciseness): e8. Treat(ssn, s,
. . .), Treat(ssn, s′, . . .)→ s = s′. Assume that the target instance
TREATMENTS contains tuples t4 = (ssn : 222, salary : 10K, . . .),
t5 = (ssn : 222, salary : 25K, . . .). We have an homomorphism
h that maps the first atom of e8 into t4, and the second one into
t5. In this case, the witness variable, i.e., the variable that imposes
the constraint that the two tuples have the same SSN, is ssn, and its
value is 222.

Definition 7 [EQUIVALENCE CLASS] Given a repair Rep, and an
egd e : ∀x (φ(x) → x = x′), let x̄w ⊆ x̄ be the witness variables
of e. An equivalence class for Rep and e, H, is a set of homomor-
phisms of φ(x̄) into 〈I,Rep(J)〉 such that all hi ∈ H have equal
witness values hi(x̄w).

Notice that equivalence classes induce classes of tuples in a nat-
ural way. In our example above, the tuples are partitioned into two
equivalence classes, as follows: ec1 = {t1, t2, t3} (with witness 1)
and ec2 = {t4, t5} (with witness 2).

To identify a violation, we look for different values in the con-
clusion of e. To see an example, consider the equivalence class



ec1 (witness 1), composed of the three tuples {t1, t2, t3}: to iden-
tify the violation, we notice that they have two different values for
the B attribute, 2 and 4, respectively. To formalize this, we intro-
duce the set of witness groups, w-groupsH, and conclusion groups,
c-groupsH, for H and e, as the set of cell groups associated by
any homomorphism h ∈ H with the witness variables, x̄w, and the
conclusion variables, x, x′, respectively:

w-groupsH =
⋃

h∈H,xw∈x̄w
gh(xw)

c-groupsH =
⋃

h∈H gh(x) ∪
⋃

h∈H gh(x′)

We say that an equivalence class for Rep and e generates a vi-
olation if it has at least two conclusion groups with different val-
ues and such that there is no ordering among them, i.e, there ex-
ist g1, g2 ∈ c-groupsH such that val(g1) 6= val(g2) and neither
g1�Πg2 nor g2�Πg1. In this case, we say that e is applicable to
〈I,Rep(J)〉 withH.

The Chase We are now ready to define the notion of a chase step.
Our goal is to define the chase in such a way that it is as general
as possible, but at the same time it allows to plug-in optimizations
to tame the exponential complexity. In order to do this, we intro-
duce the crucial notion of a repair strategy for an equivalence class,
which provides the hook to introduce the notion of a cost manager
in the next section.

A repair strategy rsH for H is a mapping from the set of con-
clusion cell-groups, c-groupsH of Rep and H, into the set {f , b}
(where f stands for “forward”, and b for “backward”). We call the
forward groups, forw-grsH

, of rsH the set of groups gi such that
rsH(gi) = f , and the backward groups, back-grsH

, those such
that rsH(gi) = b.

For each backward group g ∈ back-grsH
and for each target

cell ci ∈ g, we assume that the repair strategy rsH also identifies
(whenever this exists) one of the witness cells in w-groupsH to be
backward-repaired. This cell, denoted by w-cellrsH(ci), must be
such that:

(i) it belongs to the same tuple as ci;

(ii) the corresponding cell group gi according to Rep has a constant
value, i.e., val(gi) ∈ CONSTS;

(iii) the corresponding cell group gi has empty justifications, i.e.,
just(gi) = ∅.

Observe that we do not chase backward in two cases: first, when
cells contain nulls or lluns; in fact, nulls and lluns are essentially
placeholders, and there is no need to replace a placeholder by an-
other one, since this is does not represent an upgrade of the repair;
second, when cell values have a justification from the source; since
we use the source to model high-reliability data, we consider it un-
acceptable to disrupt a value coming from the source in favor of a
llun.

Each chase step is defined based on a specific repair strategy.

Definition 8 [CHASE STEP] Given a cleaning scenario CS = {S,
T ,Σ,Π}, and a complete repair Rep of J , let e : ∀x (φ(x)→ x =
x′) be an egd in Σ, applicable to 〈I,Rep(J)〉 with H. For each
repair strategy rsH, a chase step generates a new repair ReprsH
defined as follows:

(i) to start, we initialize ReprsH
= Rep

(ii) then, we replace all forward groups by their least upper bound:

ReprsH
= ReprsH

− forw-grsH
∪ lub�Π (forw-grsH

)

(iii) finally, we add the backward repairs, i.e, for each backward
group g ∈ back-grsH

, and cell ci ∈ occ(g), we replace gi = gRep(

w-cellrsH(ci)) by the cell group g′i that is an immediate successor
of gi according to �Π as follows:

ReprsH
= ReprsH

− {gi} ∪ {g′i}
Note that such a successor always exists. Indeed, g′i = 〈Li →
occ(gi), by ∅〉, where Li is a new LLUN value, is a successor of gi.

Given Rep, each repair strategy rsiH for H generates a different
step, ReprsiH

. We simultaneously consider all these chase steps, in
parallel, and write Rep→e,H Reprs0H

,Reprs1H
. . . ,ReprsnH

.

Consider again dependency e8 in Example 1, and the equiva-
lence class associated with witness ssn = 222. The cell groups
for the conclusion cells are: g = 〈10K → {t4.SALARY}, by ∅〉
and g′ = 〈25K → {t5.SALARY}, by ∅〉. Notice that the two
cell groups are incomparable, and therefore we have a violation.
The chase procedure generates three different repairs for the viola-
tion: (a) the forward repair is: Repf,f = 〈25K → {t4.SALARY,
t5.SALARY}, by ∅〉 (25K is more recent than 10K as a salary, and
therefore it is preferred); as you can see, the least upper bound is
constructed in such a way that it contains the union of occurrences
and the union of justifications of the two conflicting groups; (b) the
first backward repair, which changes the first occurrence of the wit-
ness variable ssn to a llun L1: Repb,f = 〈L1 → {t4.SSN}, by ∅〉;
(c) the second backward repair, changing the second occurrence of
ssn to L2: Repf,b = 〈L2 → {t5.SSN}, by ∅〉.

Definition 9 [CHASE TREE] Given a cleaning scenario CS = {S,
T ,Σ,Π}, a chase of 〈I , J 〉 with Σ is a tree whose root is 〈I , J 〉,
i.e., the empty repair, and for each node Rep, the children of Rep
are the repairs Rep0,Rep1, . . . ,Repn such that, for some e ∈ Σ
and some H, it is the case that Rep →e,H Rep0,Rep1, . . . ,Repn.
The leaves are repairs Rep` such that there is no dependency appli-
cable to 〈I,Rep`(J)〉 with some equivalence class H. Any leaf in
the chase tree is called a result of the chase of 〈I , J 〉 with Σ.

Note that, as usual, the chase procedure is sensitive to the order
of application of the dependencies. Different orders of applica-
tion of the dependencies may lead to different chase sequences and
therefore to different results.

We next show that the chase procedure always generates solu-
tions, i.e., it is sound, and it terminates after a finite number of
steps. Furthermore, all minimal solutions can be obtained in this
way, i.e., the chase is complete for minimal solutions.

Theorem 4: Given a cleaning scenario CS = {S, T ,Σ,Π} and
an instance 〈I , J 〉, the chase of 〈I , J 〉 with Σ (i) terminates; (ii)
it generates a finite set of results, each of which is a solution for CS
over 〈I , J 〉; and (iii) it generates all minimal solutions.

Complexity It is well-known [5] that a database can have an expo-
nential number of solutions, even for a cleaning scenario with a sin-
gle FD and when no backward chase steps are allowed. In general,
it is readily verified that a cleaning scenario can have at most an
exponential number of solutions. When considering the disjunctive
chase procedure, as outlined above, one can verify that each solu-
tion is computed in a number of steps that is polynomial in the size
of the data. For this, it suffices to observe that one can associate an
integer-valued function f on repairs such that f(Rep) < f(Rep′)
whenever Rep→e,H Rep′ during the chase. Intuitively, f depends
on the number of llun values and sizes of cell groups in the repairs.
Since both the number of lluns and size of cell groups is bounded by
the input instance, we may infer that f cannot be increased further
after polynomially many steps, i.e., when a solution is obtained.

In contrast, computing all solutions by means of the chase takes
exponential time in the size of instance. Indeed, given the polyno-
mial size of each branch in the chase tree, as argued above, and the



fact that the branching factor is polynomially bounded by the input,
the overall chase tree is exponential in size. We discuss techniques
to handle this high complexity in the next section.

8. A SCALABLE CHASE
The chase procedure defined in the previous section provides an

elegant operational semantics for cleaning scenarios. However, as
argued above, computing all solutions has very high complexity,
which makes the chase often impractical. In this section, we in-
troduce a number of techniques that improve the scalability of the
chase, namely: a central component of our framework, the cost
manager, and a representation systems for chase trees, called delta
databases.

8.1 Introducing the Cost Manager
Chasing at the equivalence-class level is more efficient than chas-

ing at the tuple level, but by itself it does not reduce the total
number of solutions, and ultimately the complexity of the whole
chase process. In fact, previous proposals have chosen many differ-
ent and often ad-hoc ways to reduce the complexity by discarding
some of the solutions in favor of others. Among these we men-
tion various notions of minimality of the repairs [3, 8, 7], certain
regions [18], and sampling [7]. We propose to incorporate these
pruning methods into the chase process in a more principled and
user-customizable way by introducing a component, called the cost
manager.

Definition 10 [COST MANAGER] Given a cleaning scenario, CS
and instance 〈I , J 〉, a cost manager for CS and 〈I , J 〉 is a predicate
CM over repair strategies to be used during the chase. For each
repair strategy rsH for equivalence classH, it may either accept it
(CM(rsH) = true), or refuse it (CM(rsH) = false).

During the chase, we shall systematically make use of the cost
manager. Whenever we need to chase an equivalence class, we only
generate repairs corresponding to repair strategies accepted by the
cost manager. The standard cost manager is the one that accepts
all repair strategies, and may be used for very small scenarios. As
an alternative, our implementation offers a rich library of cost man-
agers. Among these, we mention the following, that have been used
in experiments:
– a maximum size cost manager (SN): it accepts repair strategies as
long as the number of leaves in the chase tree (i.e., the repairs pro-
duced so far) are less than N ; as soon as the size of the chase tree
exceedsN , it accepts only the first one of them, and rejects the rest;
as a specific case, the S1 cost manager only considers one order of
application of the dependencies, and ignores other permutations;
– a frequency cost manager (FR): in order to repair equivalence
class H for dependency e, FR adopts the following rules; it relies
on the frequency of values appearing in conclusion cells, and on
a similarity measure for values (based on the Levenshtein distance
for strings); then: (i) it rejects repair strategies that backward-chase
cells with the most frequent conclusion value; (ii) for every other
conclusion cell, if its value is similar (distance below a fixed thresh-
old) to the most frequent one, the cell is forward-chased; otherwise,
it is backward chased; this is typically used with a frequency rule
in the partial order of cell-groups;
– a forward-only cost manager (FO): it accepts forward-only repair
strategies, and rejects those that perform backward repairs.

Notice that combinations of these strategies are possible, to ob-
tain, e.g., a FR-S5 or a FR-S1-FO cost manager. The FR-S5 re-
lies on value frequencies and, in addition, it considers five different
permutations of the dependencies, and for each of them will com-
pute one repair. Alternative cost managers may implement different

pruning strategies, to incorporate the notion of a certain region, and
refute all steps in which changes are made to attributes of the target
that are considered to be “fixed”, i.e., reliable, or perform different
forms of sampling. In the following, we shall always assume that a
cost manager has been selected in order to perform the chase.

8.2 Delta Databases
Even with cost managers in place, the parallel nature of our chase

algorithm imposes to store a possibly large tree of repairs. A naive
approach in which new copies of the whole database are created
whenever we need to generate a new node in the tree, is clearly in-
efficient. To solve this problem, we introduce an ad-hoc represen-
tation system for nodes in our chase trees, called delta databases.
Delta databases are a formalism to store a finite set of worlds into a
single relational database. Intuitively, they allow to store “deltas”,
i.e., modifications to the original database, rather than entire in-
stances as is done in the naive approach.

Delta relations rely on an attribute-level storage system, inspired
by U-relations [2], modified to efficiently store cell groups and
chase sequences. More specifically, (i) each column in the orig-
inal database is stored in a separate delta relation, to be able to
record cell-level changes; (ii) chase steps are identified by a func-
tion with a prefix property, such that the id of the father of n is a
prefix of the encoding of n; this allows to quickly reconstruct the
state of the database at any given step, using fast SQL queries; (iii)
additional tables are used to store cell groups, i.e., occurrences and
justifications.

More formally, we introduce a function stepId() that associates a
string id with each chase step, i.e., with each node in the chase tree,
and has the prefix property such that, stepId(father(n)) is a prefix
of stepId(n), for each n. For this, we use the function that assigns
the id r to the root, r.0, r.1, . . ., r.n to its children, and so on.

Definition 11 [DELTA DATABASE] Given a target database schema
R = {R1, . . . , Rk}, a delta database forR contains the following
tables: (i) a delta table Ri Aj with attributes (tid, stepId, value),
for each Ri and each attribute Aj of Ri; (ii) a table occurrences,
with schema (stepId, value, tid, table, attr); (iii) a table justifica-
tions, with schema (stepId, value, tid, table, attr).

During the chase, we store the whole chase tree into the delta
database. We do not perform updates, which are slow, but exe-
cute inserts instead. Whenever, at step s, a cell tid.A in table R
is changed to value v, we store a new tuple in the delta table R A
with value (tid, stepId, v). Using this representation, it is possible
to store trees of hundreds of nodes quite efficiently. In addition, it
is relatively easy to find violations using SQL (the actual queries
are omitted for space reasons).

In the next section we show how the combination of our ad-
vanced chase procedure and its implementation under the form of
delta databases scale to large repairing problems with millions of
tuples and large chase trees.

9. EXPERIMENTS
The proposed algorithms have been implemented in a working

prototype of the LLUNATIC system, written in Java. In this sec-
tion, we consider several cleaning scenarios, of different nature
and sizes, and study both the quality of the repairs computed by
our system, and the scalability of the chase algorithm. We show
that our algorithm produce repairs of better quality with respect to
other systems in the literature, and at the same time scales to large
databases. All experiments have been executed on a Intel i7 ma-
chine with 2.6Ghz processor and 8GB of RAM under Linux. The
DBMS was PostgreSQL 9.2.
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Figure 4: Experimental results for HOSPITAL and CUSTOMERS.

Datasets and Scenarios. We selected two scenarios. (i) The first
one, HOSPITAL, is based on a dataset from US Department of
Health & Human Services (http://www.medicare.gov/hospitalcompare/).
The database contains a single table with 100K tuples and 19 at-
tributes, over which we specified 9 functional dependencies. (ii)
The second one, CUSTOMERS, corresponds to our running exam-
ple in Figure 1. The database schema contains 3 tables with 16
attributes, plus 2 additional tables encoding constants in CFDs. De-
pendencies are the ones in Section 1. We synthetically generated up
to 1M tuples for the 2 target relations, with a proportion of 40% in
the CUSTOMERS table, and 60% in TREATMENTS; the master-data
table contains 20% of the tuples present in CUSTOMERS. We con-
sider master-data tuples outside the total, as they cannot be modi-
fied. For this scenario, we defined the partial order as discussed in
Section 5.

It is worth noting that these scenarios somehow represent oppo-
site extremes of the spectrum of data-repairing problems. In fact,
the HOSPITAL scenario contains functional dependencies only, and
therefore is quite standard in terms of constraints; however, it can
be considered a worst-case in terms of scalability, since all data are
stored as a single, non-normalized table, with many attributes and
lots of redundancy; over this single table, the 9 dependencies inter-
act in various ways, and there is no partial-order information that
can be used to ameliorate the cleaning process.

On the contrary, the CUSTOMERS scenario contains a complex
mix of dependencies; this increased complexity of the constraints
is compensated by the fact that data is stored as two normalized ta-
bles, with no redundancy, and clear preference strategies are given
for some of the attributes.

Errors. In order to test our algorithms with different levels of
noise, we introduced errors in the two datasets. Part of these er-
rors were generated by a random-noise generator. However, in or-
der to be as close as possible to real scenarios, in the HOSPITAL
dataset we also used a different source of noise. We asked workers

from Mechanical Turk (MT) (https://www.mturk.com/mturk/) to per-
form data entry for a random sample of tuples from the original
database. Workers were shown the original tuple under the form
of a jpeg image, and needed to manually copy values into a form.
We used different groups of workers with different approval rates;
approval rates measure the quality of a worker in terms of the per-
centage of previous jobs positively evaluated within MT. Approval
rates varied between 50% and 99%; for these, we observed a per-
centage of wrong values between 5% and 1%. These errors were
then complemented with those generated by the random noise gen-
erator.

For both datasets, we generated dirty copies with a number of
noisy cells ranging from 1% to 5% of the total. Changes to the
original values were done only for attributes involved in dependen-
cies, in order to maximize the probability of generating detectable
violations.

Algorithms. We tested LLUNATIC with several cost managers cho-
sen among those presented in Section 8. We chose variants of
the LLUNATIC-FR-SN cost manager – the frequency cost-manager
that generates up to N solutions – with N = 1, 10, 50, and the
LLUNATIC-FR-S1-FO, the forward-only variant of LLUNATIC-FR-
S1. We do not report results obtained by the standard cost manager,
as it only can be used with small instances due to its high comput-
ing times.

In order to compare our system to previous approaches, we tested
also the following FD repair algorithms from the literature, imple-
mented as separate systems: (a) Mimimum Cost [8] (MIN. COST);
(b) Vertex Cover [23] (VERTEX COVER); (c) Repair Sampling [7]
(SAMPLING), for which, for each experiment, we took 500 samples,
as done in the original paper.

Notice that these systems support a smaller class of constraints
wrt to the ones expressible with cleaning egds (essentially FDs
and, in some cases, CFDs). Several of the constraints in the CUS-
TOMERS scenario are outside of this class, and therefore cannot



handled by these algorithms. We therefore performed the compari-
son on the HOSPITAL scenario only.

Quality Metrics. We used precision-recall metrics. More specif-
ically, for each clean database, we generated the set Cp of pertur-
bated cells. Then, we run each algorithm to generate a set of re-
paired cells, Cr , and computed precision (P ), recall (R), and F-
measure (F = 2× (P ×R)/(P +R)) of Cr wrt Cp. Since several
of the algorithms may introduce variables as repairs – like our lluns
– we calculated two different metrics.

The first one is the one adopted in [7], which we call Metric 0.5:
(i) for each cell c ∈ Cr repaired to the original value in Cp, the
score was 1; (ii) for each cell c ∈ Cr changed into a value different
from the one in Cp, the score was 0; (iii) for each cell c ∈ Cr
repaired to a variable value, if the cell was also in Cp, the score
was 0.5. In essence, a llun or a variable is counted as a partially
correct change. This gives an estimate of precision and recall when
variables are considered as a partial match.

Since our scenarios may require a consistent number of vari-
ables, due to the need for backward repairs, and this metric dis-
favors variables, we also adopt a different metric, which counts all
correctly identified cells. In this metric, called Metric 1.0, item
(iii) above becomes: for each cell c ∈ Cr repaired to a variable
value, if the cell was also in Cp, the score was 1.

Whenever an algorithm returned more than one repair for a data-
base, we calculated P, R, and F for each repair; in the graphs, we
report the maximum, minimum, and average values.

Quality Figure 4 shows quality and scalability results. We start by
showing that LLUNATIC produces repairs of significantly higher
quality with respect to those produced by previous algorithms. We
ran LLUNATIC with the cost managers listed above, and the three
competing algorithms on samples of the HOSPITAL dataset with in-
creasing size (5k to 25k tuples) and increasing percentage of errors
(1% to 5%). We do not report values for the LLUNATIC-FR-S50
cost manager, since they differ for less than one percentage point
from those of LLUNATIC-FR-S10.

The maximum F-measure for Metric 1 is in Figure 4.(a); for the
two algorithms that return more than one solution, the minimum
and average F-measures are reported in Figure 4.(b). The maxi-
mum F-measure for Metric 0.5 is in Figure 4.(c). Quality results
for algorithms MIN. COST, VERTEX COVER, and REP. SAMPLING are
consistent with those reported in [7], which also conducted a com-
parison of these three algorithms on scenarios in which left and
right-hand-side repairs were necessary.

It is not surprising that the F-measure in these cases is quite low.
Consider, in fact, a relation R(A,B) with FD A → B and a tuple
R(a, 1); suppose the first cell is changed to introduce an error, so
that the tuple becomes R(x, 1). There are many cases in which
this error is not fixed by repairing algorithms. This happens, in
fact, whenever the new tuple, R(x, 1), does not get involved in
any conflict, and therefore the error goes undetected. In addition,
even if a violation is raised, an algorithm may choose to repair the
right-hand side of the dependency, thus missing the correct repair.
Finally, even when a left-hand-side repair is correctly identified,
algorithms have no clue about the right value for the A attribute,
and may do little more than introducing a variable – a llun in our
case – to fix the violation. All of these cases contribute to lower
precision and recall.

The superior quality achieved by LLUNATIC variants can be ex-
plained by first noticing that algorithms capable of repairing both
right and left-hand sides of dependencies obtained better results
than those that only perform forward repairs. Besides LLUNATIC,
the only other algorithm capable of backward repairs is SAMPLING.

However, this algorithm picks up repairs in a random way. On the
contrary, LLUNATIC’s chase algorithm explores the space of solu-
tions is a more systematic way, and this explains its improvements
in quality.

Figures 4.(d) reports results for the CUSTOMERS scenario. Re-
call that LLUNATIC is the first system that is able to handle such
kind of scenarios with complex constraints. We notice that quality
results are better than those on HOSPITAL; this is a consequence of
the clear user-specified preference rules.

Scalability The trade-offs between quality and scalability are shown
in Figures 4.(e) and 4.(f). Figure 4.(e) compares execution times
for the various algorithms on the HOSPITAL scenario up to 100K
tuples, with 1% perturbation. Recall that LLUNATIC is the first
DBMS-based implementation of a data repairing algorithm. There-
fore, our implementation is somehow disfavored in this compar-
ison. To see this, consider that, when producing repairs, main-
memory algorithms may aggressively use hash-based data struc-
tures to speed-up the computation of repairs, at the cost of using
more memory. Using the DBMS, our algorithm is constrained to
use SQL for accessing and repairing data; to see how this changes
the cost of a repair, consider that even updating a single cell (a very
quick operation when performed in main memory) when using the
DBMS requires to perform an UPDATE, and therefore a SELECT
to locate the right tuple.

Nevertheless, the LLUNATIC-FR-S1 cost manager scales nicely
and had better performances than some of the main memory im-
plementations. We may therefore say that graphs (c) and (e) in
Figure 4 give us a concrete perception of the trade-offs between
complexity and accuracy, and allow us to say that the LLUNATIC-
FR-S1 is the best compromise for the HOSPITAL scenario. Other
algorithms do not allow to fine tune this trade-off. To see an ex-
ample, consider the REP. SAMPLING algorithm: we noticed that
taking 1000 samples instead of 500 doubles execution times, but it
does not produce significant improvements in quality.

Figure 4.(f) clearly shows the benefits that come with a DBMS
implementation wrt main-memory ones, namely the possibility of
scaling up to very large databases. While previous works [8, 7]
have reported results up to a few thousand tuples, we were able to
investigate the performance of the system on databases of millions
of tuples. The figure shows that LLUNATIC scales in both scenar-
ios to large databases. For the HOSPITAL scenario we replicated
the original dataset ten times with 1% errors. In these cases, exe-
cution times in the order of the hours for millions of tuples can be
considered as a remarkable result, since no system had been able
to achieve them before on problems of such exponential complex-
ity. It is interesting to note that performances were significantly
better on the CUSTOMERS scenario. This is not surprising: as we
discussed above, the CUSTOMERS database contains non redun-
dant, normalize tables. In fact, this clearly shows the benefit of a
constraint language that allows to express inter-table cleaning con-
straints.

It is also worth noting that storing chase trees as delta databases
is crucial in order to achieve such a level of scalability. Without
such a representation system times would be orders of magnitude
higher.

10. RELATED WORK
Several classes of constraints have been proposed to character-

ize and improve the quality of data (see [13, 15] for surveys). Most
relevant to this paper are the (semi-)automated repairing algorithms
for these constraints [7, 8, 10, 18, 19, 23]. These methods differ in
the constraints that they admit, e.g., FDs [7, 8], CFDs [10, 23], in-



clusion dependencies [8], and editing rules [18], and the underlying
techniques used to improve their effectiveness and efficiency, e.g.,
statistical inference [10], measures of the reliability of the data [8,
18], and user interaction [10, 25].

All of these methods work for a specific class of constraints only,
with the exception of [19, 9]. These works explore the interac-
tion among different kinds of dependencies, but they do not have a
unified formal semantics with a definition of solution, neither the
generality of our partial order to model preferences.

In industrial settings, most data quality related tasks are executed
with ETL tools (e.g, Talend, and Informatica PowerCenter). These
systems are employed for data transformations and have low-level
modules for specific data quality tasks, such as verification of ad-
dresses and phone numbers. More complex operations are also par-
tially available, but lack the support for constraints.

We do allow for forward and backward chasing. Similarly, [10,
23, 7] resolve violations by changing values for attributes in both
the premise and conclusion of constraints. They do, however, only
support a limited class of constraints. Previous works [23, 7] have
used variables in order to repair the left-hand side of dependencies.
With respect to variables, our lluns are a more sophisticated tool.
In our approach, the full power of lluns is achieved in conjunction
with cell-groups: for each llun, the corresponding cell group pro-
vides complete provenance data for the llun, both in terms of target
and source cells. Therefore, it represents an ideal support for user
intervention, when the value of the llun must be resolved to some
constant. In fact, lluns and cell-groups can be seen as a novel rep-
resentation system [22] for solutions, that stands in between of the
naive tables of data exchange, and of the more expressive c-tables,
trying to strike a balance between complexity and expressibility.

An approach similar to ours has been proposed in [6], with re-
spect to a different cleaning problem. The authors concentrate
on scenarios with matching dependencies and matching functions,
where the main goal is to merge together values based on attribute
similarities, and develop a chase-based algorithm. They show that,
under proper assumptions, matching functions provide a partial or-
der over database values, and that the partial order can be lifted
to database instances and repairs. A key component of their ap-
proach is the availability of matching functions that are essentially
total, i.e., they are able to merge any two comparable values. In
fact, the problem they deal with can be seen as an instance of the
entity-resolution problem. In this paper, we deal with the different
problem of data-repairing under a large class of data-cleaning con-
straints, and have a more ambitious goal, i.e., to embed different
forms of value preference into a general semantics for the cleaning
process. Our main intuition is that the notion of a partial order is an
effective way to let users specify value preferences, and to incorpo-
rate them into the semantics in a principled way. In order to do this,
we have shown that reasoning on the ordering of values – as in [6]
– or on the ordering of single cells is not enough. On the contrary,
it is necessary to devise a more sophisticated notion of a partial
order for cell-groups, i.e., groups of cells that need to be repaired
together and for which lineage information is maintained. Also, we
do not make strong assumptions about the possibility of resolving
all conflicts among values in the database, and therefore introduce
lluns as a third category of values besides nulls and constants.

A comparison of the features supported by existing methods and
our repairing method is given in Table 1. We believe that this work
makes a concrete step forward towards the goal of developing a
uniform formalism for data cleaning, and may stimulate further re-
search on this subject. With a similar spirit, [11] has developed
a unifying view of previous approaches by abstracting different
classes of constraints with respect to a different problem, that of

query answering over inconsistent data.
Our framework can be seen as an extension of the data exchange

setting [12]. With respect to the standard chase algorithms for egds,
our chase always terminates and never fails, by leveraging the par-
tial order. We are not aware of any extension of the data exchange
setting that allows the introduction of special values (like lluns) to
avoid failing chase computations. In fact, we are currently extend-
ing our formalism to accommodate for mapping and cleaning sce-
narios, in such a way to maintain the results from the data exchange
literature and enlarge them to data repairing.
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